how large can the kinetic energy of an electron be that is localized within a distance (change in) x = .1 nmapproximately the diameter of a hydrogen atom (ev)

Respuesta :

Answer:

The kinetic energy of an electron is [tex]1.54\times10^{-15}\ J[/tex]

Explanation:

Given that,

Distance = 0.1 nm

We need to calculate the momentum

Using uncertainty principle

[tex]\Delta x\Delta p\geq\dfrac{h}{4\pi}[/tex]

[tex]\Delta p\geq\dfrac{h}{\Delta x\times 4\pi}[/tex]

Where, [tex]\Delta p[/tex] = change in momentum

[tex]\Delta x[/tex] = change in position

Put the value into the formula

[tex]\Delta p=\dfrac{6.6\times10^{-34}}{4\pi\times10^{-10}}[/tex]

[tex]\Delta p=5.3\times10^{-23}[/tex]

We need to calculate the kinetic energy for an electron

[tex]K.E=\dfrac{p^2}{2m}[/tex]

Where, P = momentum

m = mass of electron

Put the value into the formula

[tex]K.E=\dfrac{(5.3\times10^{-23})^2}{2\times9.1\times10^{-31}}[/tex]

[tex]K.E=1.54\times10^{-15}\ J[/tex]

Hence, The kinetic energy of an electron is [tex]1.54\times10^{-15}\ J[/tex]