For tool A, Taylor's tool life exponent (n) is 0.45 and constant (K) is 90. Similarly for tool B, n = 0.3 and K = 60. The cutting speed (in m/min) above which tool A will have a higher tool life than tool B is (a) 26.7 (b) 42.5 (c) 80.7 (d) 142.9

Respuesta :

Answer:

26.667

Explanation:

Given Data

For Tool A

Life exponent [tex]{\ n_1}[/tex]=0.45

Constant [tex]{C_1}[/tex]=90

For tool B

Life exponent [tex]{n_2}[/tex]=0.3

Constant [tex]{C_2}[/tex]=60

and tool life equation is

[tex]VT^{n}=c[/tex]

[tex]VT_{A}^{0.45}=90[/tex]

[tex]T_{A}^{0.45}=\frac{90}{V}[/tex]

[tex]T_{A}=\frac{90}{V}^{\frac{1}{0.45}}[/tex]

[tex]For Tool B[/tex]

[tex]VT_{A}^{0.3}=60[/tex]

[tex]T_{B}^{0.3}=\frac{60}{V}[/tex]

[tex]T_{B}=\frac{60}{V}^{\frac{1}{0.3}}[/tex]

[tex]T_{A}>T_{B}[/tex]

[tex]\frac{90}{V}^{\frac{1}{0.45}}>\frac{60}{V}^{\frac{1}{0.3}}[/tex]

[tex]V>26.667[/tex]