Respuesta :

Answer:

The solution of the given initial value problems in explicit form is [tex]y=x-x^2-2[/tex]  and the solutions are defined for all real numbers.

Step-by-step explanation:

The given differential equation is

[tex]y'=1-2x[/tex]

It can be written as

[tex]\frac{dy}{dx}=1-2x[/tex]

Use variable separable method to solve this differential equation.

[tex]dy=(1-2x)dx[/tex]

Integrate both the sides.

[tex]\int dy=\int (1-2x)dx[/tex]

[tex]y=x-2(\frac{x^2}{2})+C[/tex]                  [tex][\because \int x^n=\frac{x^{n+1}}{n+1}][/tex]

[tex]y=x-x^2+C[/tex]              ... (1)

It is given that y(1) = -2. Substitute x=1 and y=-2 to find the value of C.

[tex]-2=1-(1)^2+C[/tex]

[tex]-2=1-1+C[/tex]

[tex]-2=C[/tex]

The value of C is -2. Substitute C=-2 in equation (1).

[tex]y=x-x^2-2[/tex]

Therefore the solution of the given initial value problems in explicit form is [tex]y=x-x^2-2[/tex] .

The solution is quadratic function, so it is defined for all real values.

Therefore the solutions are defined for all real numbers.