Respuesta :

Answer:

Step-by-step explanation:

Given function is

(a)F(x)=[tex]\left ( x^{3}+5\right )^{0.25}-15e^{x^{3}}[/tex]

[tex]F^{'}\left ( x\right )[/tex]=[tex]0.25\left ( x^{3}+5\right )^{-0.75}\frac{\mathrm{d} x^{3}}{\mathrm{d} x}-15e^{x^{3}}\frac{\mathrm{d} x^{3}}{\mathrm{d} x}[/tex]

[tex]F^{'}\left ( x\right )=0.25\left ( x^{3}+5\right )^{-0.75}\times 3x^{2}-15e^{x^{3}}\times \left ( 3x^{2}\right )[/tex]

(b)F(x)=[tex]\frac{\left ( x-3\right )^2\left ( x-5\right )}{\left ( x-4\right )^2\left ( x^{2}+3\right )^5}[/tex]

[tex]F^{'}\left ( x\right )[/tex]=[tex]\frac{\left [ 2\left ( x-3\right )\right \left ( x-5\right )+\left ( x-3\right )^2]\left [ \left ( x-4\right )^2\left ( x^2+3\right )^5\right ]-\left [ 2\left ( x-4\right )^{3}\left ( x^2+3\right )^5+5\left ( x^2+3\right )^4\left ( 2x\right )\left ( x-4\right )^2\right ]\left [ \left ( x-3\right )^2\left ( x-5\right )\right ]}{\left [\left ( x-4\right )^2\left ( x^2+3\right )^5\right ]^2}[/tex]