Respuesta :

gmany

Answer:

[tex]\large\boxed{2<x<3\to x\in(2,\ 3)}[/tex]

Step-by-step explanation:

[tex](1)\\4x-4<8\qquad\text{add 4 to both sides}\\4x<12\qquad\text{divide both sides by 4}\\x<3\\\\(2)\\9x+5>23\qquad\text{subtract 5 from both sides}\\9x>18\qquad\text{divide both sides by 9}\\x>2\\\\\text{From (1) and (2) we have}\ 2<x<3[/tex]

Answer:

[tex]2<x<3[/tex]

Step-by-step explanation:

Given : Inequality [tex]4x-4<8[/tex] and [tex]9x+5>23[/tex]

To find : Solve for x?

Solution :

Inequality 1 - [tex]4x-4<8[/tex]

Add 4 both side,

[tex]4x<12[/tex]

Divide by 4 both side,

[tex]x<3[/tex]

Inequality 2 - [tex]9x+5>23[/tex]

Subtract 5 both side,

[tex]9x>18[/tex]

Divide by 9 both side,

[tex]x>2[/tex]

From Inequality 1 and 2,

[tex]x<3[/tex] and [tex]x>2[/tex]

or [tex]2<x<3[/tex]