Respuesta :

Answer:

[tex]3-\sqrt{11}[/tex]

Step-by-step explanation:

If you want rational coefficients then you would want the conjugate of any irrational zero given.

The question is equivalent to what is the conjugate of [tex]3+\sqrt{11}[/tex].

The conjugate of [tex]3+\sqrt{11}[/tex] is [tex]3-\sqrt{11}[/tex].

In general, the conjugate of a+b is a-b

or the conjugate of a-b is a+b.

Or maybe you like this explanation more:

Let [tex]x=3+\sqrt{11}[/tex]

Subtract 3 on both sides:

[tex]x-3=\sqrt{11}[/tex]

Square both sides:

[tex](x-3)^2=11[/tex]

Subtract 11 on both sides:

[tex](x-3)^2-11=0[/tex]

Use difference of squares to factor. I apply [tex]u^2-v^2=(u-v)(u+v)[/tex].

[tex]([x-3]-\sqrt{11})([x-3]+\sqrt{11})=0[/tex]

So you have either

[tex][x-3]-\sqrt{11}=0[/tex] or [tex][x-3}+\sqrt{11}=0[/tex]

Solve both for x-3 and then x.

Add sqrt(11) on both sides for first equation and subtract sqrt(11) on both sides for second equation:

[tex]x-3=\sqrt{11}[/tex] or [tex]x-3=-\sqrt{11}[/tex]

Add 3 on both sides:

[tex]x=3+\sqrt{11}[/tex]  or [tex]x=3-\sqrt{11}[/tex]