a wave travels in a string at 58 m/s. a second string of 10% greater linear density has the same tension applied as in the first string. what will be the resulting wave speed in the second string

Respuesta :

Answer:

The speed of wave in the second string is 55.3 m/s.

Explanation:

Given that,

Speed of wave in first string= 58 m/s

We need to calculate the wave speed

Using formula of speed for first string

[tex]v_{1}=\sqrt{\dfrac{T}{\mu_{1}}}[/tex]...(I)

For second string

[tex]v_{2}=\sqrt{\dfrac{T}{\mu_{2}}}[/tex]...(II)

Divided equation (II) by equation (I)

[tex]\dfrac{v_{2}}{v_{1}}=\sqrt{\dfrac{\dfrac{T}{\mu_{2}}}{\dfrac{T}{\mu_{1}}}}[/tex]

Here, Tension is same in both string

So,

[tex]\dfrac{v_{2}}{v_{1}}=\sqrt{\dfrac{\mu_{1}}{\mu_{2}}}[/tex]

The linear density of the second string

[tex]\mu_{2}=\mu_{1}+\dfrac{10}{100}\mu_{1}[/tex]

[tex]\mu_{2}=\dfrac{110}{100}\mu_{1}[/tex]

[tex]\mu_{2}=1.1\mu_{1}[/tex]

Now, Put the value of linear density of second string

[tex]\dfrac{v_{2}}{v_{1}}=\sqrt{\dfrac{\mu_{1}}{1.1\mu_{1}}}[/tex]

[tex]v_{2}=v_{1}\times\sqrt{\dfrac{1}{1.1}}[/tex]

[tex]v_{2}=58\times\sqrt{\dfrac{1}{1.1}}[/tex]

[tex]v_{2}=55.3\ m/s[/tex]

Hence, The speed of wave in the second string is 55.3 m/s.