The tread life of tires mounted on light duty trucks follows the normal probability distribution with a mean of 60,000 miles and a standard deviation of 4,000 miles. Suppose you bought a set of four tires, what is the likelihood the mean tire life of these four tires is more than 66,000 miles?

Respuesta :

Answer:  0.0013

Step-by-step explanation:

Given : The test scores are normally distributed with

Mean : [tex]\mu=\ 60,000[/tex]

Standard deviation :[tex]\sigma= 4,000[/tex]

Sample size : [tex]n=4[/tex]

The formula to calculate the z-score :-

[tex]z=\dfrac{x-\mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]

For x = 66,000

[tex]z=\dfrac{66000-60000}{\dfrac{4000}{\sqrt{4}}}=3[/tex]

The p-value = [tex]P(z>3)\=1-P(z<3)=1- 0.9986501\approx0.0013[/tex]

Hence, the likelihood the mean tire life of these four tires is more than 66,000 miles = 0.0013