Answer:
Intrinsic Value of the bond $90.69
Explanation:
[tex]\left[\begin{array}{ccc}Year&Dividends&Present Value\\1&16&14.2857142857143\\2&12&9.56632653061224\\3&11&7.82958272594752\\4&92.8571428571429&59.0123929947343\\Intrinsic&Value&90.6940165370084\\\end{array}\right][/tex]
The dividends value are givens:
Then on year 4 we apply the Dividends growth model
[tex]\frac{divends}{return-growth} = Intrinsic \: Value[/tex]
[tex]\frac{6.50 }{0.12-0.05} = Intrinsic \: Value[/tex]
Next step, we take all the values to present date
[tex]\frac{Nominal}{(1+rate)^{time} } = PV[/tex]
Year 1 /1.12
Year 2 /1.12^2
Year 3 /1.12^3
Year 4 /1.12^4
Final step, we add them to get the intrinsic value of the bond today.