A 280-g mass is mounted on a spring of constant k = 3.3 N/m. The damping constant for this damped system is b = 8.4 x 10^-3 kg/s. How many oscillations will the system undergo during the time the amplitude decays to 1/e of its original value?

Respuesta :

Answer:

The number of oscillation is 36.

Explanation:

Given that

Mass = 280 g

Spring constant = 3.3 N/m

Damping constant [tex]b=8.4\times10^{-3}\ Kg/s[/tex]

We need to check the system is under-damped, critical damped and over damped by comparing b with [tex]2m\omega_{0}[/tex]

[tex]2m\omega_{0}=2m\sqrt{\dfrac{k}{m}}[/tex]

[tex]2\sqrt{km}=2\times\sqrt{3.3\times280\times10^{-3}}=1.92kg/s[/tex]

Here, b<<[tex]2m\omega_{0}[/tex]

So, the motion is under-damped and will oscillate

[tex]\omega=\sqrt{\omega_{0}^2-\dfrac{b^2}{4m^2}}[/tex]

The number of oscillation before the amplitude decays to [tex]\dfrac{1}{e}[/tex] of its original value

[tex]A exp(\dfrac{-b}{2m}t)=A exp(-1)[/tex]

[tex]\dfrac{b}{2m}t=1[/tex]

[tex]t = \dfrac{2m}{b}[/tex]

[tex]t=\dfrac{2\times280\times10^{-3}}{8.4\times10^{-3}}[/tex]

[tex]t=66.67\ s[/tex]

We need to calculate the time period of one oscillation

[tex]T=\dfrac{2\pi}{\omega}[/tex]

[tex]T=\dfrac{2\times3.14}{\sqrt{\omega_{0}^2-\dfrac{b^2}{4m^2}}}[/tex]

[tex]T=\dfrac{2\times3.14}{\sqrt{\dfrac{k}{m}-\dfrac{b^2}{4m^2}}}[/tex]

[tex]T=\dfrac{2\times3.14}{\sqrt{\dfrac{3.3}{280\times10^{-3}}-\dfrac{(8.4\times10^{-3})^2}{4\times(280\times10^{-3})^2}}}[/tex]

[tex]T=1.83\ sec[/tex]

The number of oscillation is

[tex]n=\dfrac{t}{T}[/tex]

[tex]n=\dfrac{66.67}{1.83}[/tex]

[tex]n=36[/tex]

Hence, The number of oscillation is 36.