Use the Divergence Theorem to calculate the surface integral S F · dS; that is, calculate the flux of F across S. F(x, y, z) = xyezi + xy2z3j − yezk, S is the surface of the box bounded by the coordinate plane and the planes x = 3, y = 6, and z = 1.

Respuesta :

[tex]\vec F[/tex] has divergence

[tex]\nabla\cdot\vec F=\dfrac{\partial(xye^z)}{\partial x}+\dfrac{\partial(xy^2z^3)}{\partial y}-\dfrac{\partial(ye^z)}{\partial z}=ye^z+2xyz^3-ye^z=2xyz^3[/tex]

By the divergence theorem, the integral of [tex]\vec F[/tex] across [tex]S[/tex] is equal to the integral of [tex]\nabla\cdot\vec F[/tex] over the interior of [tex]S[/tex]:

[tex]\displaystyle\iiint_S\vec F\cdot\mathrm d\vec S=\int_0^1\int_0^6\int_0^32xyz^3\,\mathrm dx\,\mathrm dy\,\mathrm dz=\boxed{\frac{81}2}[/tex]

The Divergence Theorem, establishes that

∫∫S) F× dS = ∫∫∫v) (Div. F ) × dv

Solution is:

∫∫∫V) 2xyz³dx dy dz = 36

∫∫S) F× dS  = 36

We can either calculate   ∫∫S) F× dS or ∫∫∫v) (Div. F ) × dv wichever is easier

In order to answer that question we first find Div F.

Div F = ( δF/δx i + δF/δy j + δF/δz k ) × F

Div F = ( δF/δx i + δF/δy j + δF/δz k ) × ( xye∧z i + xy²z³ j - ye∧z k )

Div F = ye∧z + 2xyz³ - ye∧z

Div F = 2xyz³

In rectangular coordinates:   dv = dx×dy×dz Then

∫∫∫V) 2xyz³dx dy dz          Integration limits are :

x    from 0 to 3

y    from 0 to 6

z    from 0  to 1

∫∫∫V) 2xyz³dx dy dz = 2× ∫ ₀³x dx ∫₀⁶y dy ∫₀¹z³ dz

∫∫∫V) 2xyz³dx dy dz = 2 × x²/2 |₀³ × y²/2 |₀⁶ × (1/4) z⁴|₀¹

∫∫∫V) 2xyz³dx dy dz = 8 × 18 × (1/4)

∫∫∫V) 2xyz³dx dy dz = 36

Related  Link : https://brainly.com/question/10773892