Respuesta :

You can use the law of sines, which states that the ratio between a side and the sine of the opposite angle is constant: in this triangle, we have

[tex]\dfrac{e}{\sin(E)}=\dfrac{p}{\sin(P)}=\dfrac{r}{\sin(R)}[/tex]

In this particular case, we can use the information we have about sides and angles e, r, E, R and we have

[tex]\dfrac{e}{\sin(E)}=\dfrac{r}{\sin(R)}[/tex]

Plugging the values, we have

[tex]\dfrac{e}{\sin(61)}=\dfrac{15.7}{\sin(45)}[/tex]

Solving for e, we have

[tex]e=\dfrac{15.7\sin(61)}{\sin(45)}\approx 19.41[/tex]

Answer:

Step-by-step explanation:

Use the Law of Sines:  

   a            b

--------- = ---------

sin A       sin B

In this case we have the following:

   e            15.7

--------- =   -------------

sin 61°       sin 45°

Solving for e through cross-multiplication:

       15.7 sin 61°

e = -------------------- = 19.4

            sin 45°