Respuesta :

Given a quadratic equation [tex]ax^2+bx+c=0[/tex], the two solution (if they exist) are given by the formula

[tex]x_{1,2}=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

In your case, the coefficients are

[tex]a=3,\quad b=5,\quad c=2[/tex]

So the quadratic formula becomes

[tex]x_{1,2}=\dfrac{-5\pm\sqrt{25-24}}{6} = \dfrac{-5\pm 1}{6}[/tex]

So, the two solutions are

[tex]x_1 = \dfrac{-5+1}{6}=-\dfrac{4}{6}=-\dfrac{2}{3}[/tex]

[tex]x_2 = \dfrac{-5-1}{6}=-\dfrac{6}{6}=-1[/tex]