Find two power series solutions of the given differential equation about the ordinary point x = 0. Compare the series solutions with the solutions of the differential equation obtained using the method of Section 4.3. Try to explain any differences between the two forms of the solution. y'' − y' = 0

Respuesta :

[tex]y''-y'=0[/tex]

We can reduce the order of the ODE to make solving a bit less taxing. Let [tex]z=y'[/tex] so that [tex]z'=y''[/tex].

[tex]z'-z=0[/tex]

Then assume a solution of the form

[tex]z=\displaystyle\sum_{n=0}^\infty a_nx^n[/tex]

[tex]\implies z'=\displaystyle\sum_{n=1}^\infty na_nx^{n-1}=\sum_{n=0}^\infty(n+1)a_{n+1}x^n[/tex]

Substituting into the ODE gives

[tex]\displaystyle\sum_{n=0}^\infty(n+1)a_{n+1}x^n-\sum_{n=0}^\infty a_nx^n=0[/tex]

[tex]\displaystyle\sum_{n=0}^\infty\bigg((n+1)a_{n+1}-a_n\bigg)x^n=0[/tex]

The coefficients in the series are given according to

[tex]\begin{cases}a_0=z(0)=y'(0)\\(n+1)a_{n+1}=a_n&\text{for }n\ge0\end{cases}[/tex]

We can solve the recurrence exactly:

[tex]a_{n+1}=\dfrac{a_n}{n+1}=\dfrac{a_{n-1}}{(n+1)n}=\dfrac{a_{n-2}}{(n+1)n(n-1)}=\cdots=\dfrac{a_0}{(n+1)!}[/tex]

[tex]\implies a_n=\dfrac{a_0}{n!}[/tex]

Then

[tex]z(x)=\displaystyle y'(0)\sum_{n=0}^\infty\frac{x^n}{n!}[/tex]

and integrating both sides to solve for [tex]y(x)[/tex] gives

[tex]y(x)=\displaystyle y(0)+\int_{y(0)}^x z(t)\,\mathrm dt[/tex]

[tex]y(x)=\displaystyle y(0)+y'(0)\sum_{n=0}^\infty\frac{x^{n+1}}{(n+1)!}[/tex]

[tex]y(x)=\displaystyle y(0)+y'(0)\sum_{n=1}^\infty\frac{x^n}{n!}[/tex]

[tex]\implies y(x)=y(0)+y'(0)(e^x-1)[/tex]

(I don't know what method is apparently being used in Section 4.3...)