The measurement of the height of 600 students of a college is normally distributed with a mean of
175 centimeters and a standard deviation of 5 centimeters.

What percent of students are between 180 centimeters and 185 centimeters in height?

12.5

13.5

34

68

Respuesta :

Answer: Second Option

[tex]P(180<X <185)=13.5\%[/tex]

We know that the mean is:

[tex]\mu=175[/tex]

and the standard deviation is:

[tex]\sigma=5[/tex]

We are looking at the percentage of students between 180 centimeters and 185 centimeters in height.

This is:

[tex]P(180<X <185)[/tex]

We calculate the Z-score using the formula:

[tex]Z=\frac{X-\mu}{\sigma}[/tex]

For [tex]X=180[/tex]

[tex]Z_{180}=\frac{180-175}{5}[/tex]

[tex]Z_{180}=1[/tex]

For [tex]X=185[/tex]

[tex]Z_{185}=\frac{185-175}{5}[/tex]

[tex]Z_{185}=2[/tex]

Then we look at the normal table

[tex]P(1<Z<2)[/tex]

[tex]P(1<Z<2)=P(Z<2)-P(Z<1)[/tex]

[tex]P(1<Z<2)=0.9772-0.8413[/tex]

[tex]P(1<Z<2)=0.135[/tex]

[tex]P(180<X <185)=13.5\%[/tex]

Note: You can get the same conclusion using the empirical rule

Look at the attached image for [tex]\mu+ 1\sigma <\mu <\mu + 2\sigma[/tex]

Ver imagen luisejr77