Answer: A) [tex]X\sim N(66,2.5)[/tex]
B)0.6731
Step-by-step explanation:
Given : The height for Asian adult males is normally distributed with
Mean : [tex]\mu=66\text{ inches}[/tex]
Standard deviation : [tex]\sigma= 2.5\text{ inches}[/tex]
Let X = height of the individual.
A) The distribution of X is given by :-
[tex]X\sim N(\mu,\sigma)\\\\\Rightarrow\ X\sim N(66,2.5)[/tex]
B) The formula to find the z-score is given by :-
[tex]z=\dfrac{x-\mu}{\sigma}[/tex]
For , x= 64
[tex]z=\dfrac{64-66}{2.5}=-0.8[/tex]
For , x= 69
[tex]z=\dfrac{69-66}{2.5}=1.2[/tex]
Now, the required probability :-
[tex]P(64<x<69)=P(-0.8<z<1.2)=P(z<1.2)-P(z<0.8)\\\\=0.8849303-0.2118554=0.6730749\approx0.6731[/tex]
Hence, the probability that the person is between 64 and 69 inches is 0.6731.