Assume that on a standardized test of 100 questions, a person has a probability of 80% of answering any particular question correctly. Find the probability of answering between 74 and 84 questions

Respuesta :

Answer: 0.7264

Explanation:

The number of independent questions (n)  = 100

Probability of answering a question (p) = 0.80

Let X be the no. of questions that need to be answered.

[tex]\therefore[/tex] random variable X follows binomial distribution

The probability function of a binomial distribution is given as

[tex]P(X=x) = \binom{n}{x}\times p^{x}(1-p)^{n-x}[/tex]

Now , we nee to find P(74 ≤ X ≤ 84)

[tex]\therefore P(74\leq X\leq 84) = P(X=74) + P(X=75).........+ P(X=84)[/tex]

P(74 ≤ X ≤ 84) = [tex]\sum_{74}^{84}\binom{100}{x}\times (0.80)^{x}(0.20)^{100-x}[/tex]

P(74 ≤ X ≤ 84) = 0.7264