Respuesta :
Answer:
[tex]\frac{4x^{2}-2x+5}{2x-6} =2x + 5 + \frac{35}{2x-6}[/tex]
Step-by-step explanation:
We know that the height of a parallelogram can be found by divind the area by the lenght of the base.
The area is 4x2 – 2x + 5 and the base is 2x – 6. To find the height, we need to divide both polynomials:
[tex]\frac{4x^{2}-2x+5}{2x-6} =2x + 5 + \frac{35}{2x-6}[/tex]
Answer:
[tex]2x+5+\frac{35}{2x-6}[/tex]
Step-by-step explanation:
Given,
The area of the parallelogram, A = [tex]4x^2-2x+5[/tex]
The length of its base, b = [tex]2x-6[/tex]
∵ The height of the parallelogram.
[tex]h=\frac{A}{b}[/tex]
[tex]\implies h=\frac{4x^2-2x+5}{2x-6}[/tex]
[tex]=2x+5+\frac{35}{2x-6}[/tex] ( by long division shown below )
Hence, the height of the given parallelogram is,
[tex]2x+5+\frac{35}{2x-6}[/tex]
