Answer:
Head loss=0.00366 ft
Explanation:
Given :Water flow rate Q=0.15 [tex]\frac{ft^{3}}{sec}[/tex]
[tex]D_{1}[/tex]= 6 inch=0.5 ft
[tex]D_{2}[/tex]=2 inch=0.1667 ft
As we know that Q=AV
[tex]A_{1}\times V_{1}=A_{2}\times V_{2}[/tex]
So [tex]V_{2}=\frac{Q}{A_2}[/tex]
[tex]V_{2}=\dfrac{.015}{\frac{3.14}{4}\times 0.1667^{2}}[/tex]
[tex]V_{2[/tex]=0.687 ft/sec
We know that Head loss due to sudden contraction
[tex]h_{l}=K\frac{V_{2}^2}{2g}[/tex]
If nothing is given then take K=0.5
So head loss[tex]h_{l}=(0.5)\frac{{0.687}^2}{2\times 32.18}[/tex]
=0.00366 ft
So head loss=0.00366 ft