Answer:
the required diameter is 0.344 m
Explanation:
given data:
flow is laminar
flow of carbon dioxide Q = 0.005 Kg/s
for flow to be laminar, Reynold's number must be less than 2300 for pipe flow and it is given as
[tex]\frac{\rho VD}{\mu }<2300[/tex]
arrange above equation for diameter
\frac{\rho Q D}{\mu A }<2300
dynamic density of carbon dioxide = 1.47×[tex]10^{-5}[/tex] Pa sec
density of carbon dioxide is 1.83 kg/m³
[tex]\frac{1.83\times 0.0056\times D}{1.47\times 10^{-5}\times \frac{\pi}{4} \times D^{2} }<2300[/tex]
[tex]\frac{1.83\times 0.0056}{1.47\times 10^{-5}\times \frac{\pi}{4} \times 2300}= D[/tex]
D = 0.344 m