Respuesta :

Answer:

x = -3 and y = -2

Step-by-step explanation:

It is given that,

-7x + 6y = 9     ----(1)

-2x - 5y = 16    -------(2)

To find the solution of given equations

eq(1) * 2 ⇒

-14x + 12y = 18 ------(3)

eq(2) * 7 ⇒

-14x - 35y = 112   ---(4)

eq (3) - eq(4) ⇒

-14x + 12y = 18 ------(3)

-14x - 35y = 112  ---(4)

    0   4y = -94

y = 94/(-47) = -2

Substitute the value of y in eq (2)

-2x - 5y = 16    -------(2)

-2x - 5*-2 = 16

-2x +10 = 16

-2x = 6

x = 6/-2 = -3

Therefore x = -3 and y = -2

Answer:

[tex]x=-3\\\\y=-2[/tex]

Step-by-step explanation:

Given the system of equations [tex]\left \{ {{-7x+6y=9} \atop {-2x-5y=16}} \right.[/tex], you can use the Elimination Method to solve it.

You can multiply the first equation by -2 and the second equation by 7, then add both equations and solve for the variable "y":

[tex]\left \{ {{14x-12y=-18} \atop {-14x-35y=112}} \right.\\...........................\\-47y=94\\\\y=\frac{94}{-47}\\\\y=-2[/tex]

Substitute the value of "y" into any original equations and solve for the variable "x". Then:

[tex]-7x+6y=9\\\\-7x+6(-2)=9\\\\-7x-12=9\\\\-7x=9+12\\\\x=\frac{21}{-7}\\\\x=-3[/tex]