Respuesta :

Answer:

3 and -5

Step-by-step explanation:

(x-3)(x+5)greater than and =0​

separate

(1).

x - 3 > 0

add 3 to both sides

x > 3

(2).

x + 5 > 0

subtract 5 from both sides

x > -5

So, The solutions are 3 and -5

Answer: [tex](-\infty,-5]\ U\ [3,\infty)[/tex]

Step-by-step explanation:

Given the inequality [tex](x-3)(x+5)\geq 0[/tex], to find the solutions, we need to follow this procedure:

- First case:

[tex]x-3\geq 0[/tex] and  [tex]x+5\geq 0[/tex]

Solve for the variable "x":

[tex]x\geq 0+3\\x\geq 3[/tex]

 [tex]x\geq 0-5\\x\geq -5[/tex]

Then:

[tex]x\geq 3[/tex]

- Second case:

[tex]x+5\leq 0[/tex] and [tex]x-3\leq 0[/tex]

Solve for the variable "x":

[tex]x\leq 0-5\\x\leq -5[/tex]

[tex]x\leq 0+3\\x\leq 3[/tex]

Then:

[tex]x\leq-5[/tex]

Finally, the solution is:

[tex](-\infty,-5]\ U\ [3,\infty)[/tex]