How do you solve this?

[tex]\bf \textit{equation of a circle}\\\\ (x- h)^2+(y- k)^2= r^2 \qquad center~~(\stackrel{}{ h},\stackrel{}{ k})\qquad \qquad radius=\stackrel{}{ r} \\\\[-0.35em] ~\dotfill\\\\ (x-6)^2+(y+5)^2=16\implies [x-\stackrel{h}{6}]^2+[y-(\stackrel{k}{-5})]^2=\stackrel{r}{4^2}~\hfill \begin{cases} \stackrel{center}{(6,-5)}\\ \stackrel{radius}{4} \end{cases}[/tex]
Check the picture below.
The equation of a circle is:
(x - h)² + (y - k)² = radius²
Note:
h = x coordinate for the centre of the circle
k = y coordinate for the centre of the circle
The equation for the circle in the question is:
(x - 6)² + (y - 5)² = 16
So the coordinates for the centre of the circle is:
(6, 5)
------------------------
Since PQ is the diameter of the circle, that means the coordinates for the midpoint of PQ would also be the coordinates for the centre of the circle
That means:
( (x coords of P and Q) / 2 , (y coords of P and Q) / 2 )= (6 , 5)
So x-coords of Q:
[tex]\frac{10 + x}{2} = 6[/tex]
10 + x = 12
x = 2
y-coords of Q
[tex]\frac{-5+ x}{2} = -5[/tex]
-5 + x = - 10
x = 5
So the coordinates for Q are:
(2, -5)
---------------------------------------------
Answer:
Option A) (2, - 5)