Respuesta :

Answer:

[tex]F(x)=(x-11)(x-3)[/tex]

Step-by-step explanation:

we have

[tex]F(x)=x^{2} -14x+33[/tex]

Find the zeros of the function

F(x)=0

[tex]0=x^{2} -14x+33[/tex]

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex]-33=x^{2} -14x[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side

[tex]-33+49=x^{2} -14x+49[/tex]

[tex]16=x^{2} -14x+49[/tex]

Rewrite as perfect squares

[tex]16=(x-7)^{2}[/tex]

square root both sides

[tex](x-7)=(+/-)4[/tex]

[tex]x=(+/-)4+7[/tex]

[tex]x=(+)4+7=11[/tex]

[tex]x=(-)4+7=3[/tex]

so

The factors are

(x-11) and (x-3)

therefore

[tex]F(x)=(x-11)(x-3)[/tex]