Respuesta :

ANSWER

The correct answer is B

EXPLANATION

The given sum is

[tex] \sqrt{ {x}^{2} {y}^{3} } + 2 \sqrt{ {x}^{3} {y}^{4} } + xy \sqrt{y} [/tex]

We need to remove the perfect squares.

[tex]\sqrt{ {x}^{2} \times {y}^{2} \times y } + 2 \sqrt{ {x}^{2} \times ( {y}^{2})^{2} \times x } + xy \sqrt{y} [/tex]

Let us split the radical sign for the factors to get;

[tex]\sqrt{ {x}^{2}} \times \sqrt{ {y}^{2}} \times \sqrt{y} + 2 \sqrt{ {x}^{2} } \times \sqrt{( {y}^{2})^{2}} \times \sqrt{x} + xy \sqrt{y} [/tex]

This simplifies to

[tex]xy \sqrt{y} + 2x {y}^{2} \sqrt{x} + xy \sqrt{y} [/tex]

Group similar terms to get:

[tex]xy\sqrt{y} + xy \sqrt{y} + 2x {y}^{2} \sqrt{x} [/tex]

Combine the similar terms to get:

[tex]2xy\sqrt{y} + 2x {y}^{2} \sqrt{x} [/tex]

The correct answer is B.