Respuesta :

Given the dataset

[tex]x = \{21,\ 31,\ 26,\ 24,\ 28,\ 26\}[/tex]

We start by computing the average:

[tex]\overline{x} = \dfrac{21+31+26+24+28+26}{6}=\dfrac{156}{6}=26[/tex]

We compute the difference bewteen each element and the average:

[tex]x-\overline{x} = \{-6,\ 5,\ 0,\ -2,\ 2,\ 0\}[/tex]

We square those differences:

[tex](x-\overline{x})^2 = \{36,\ 25,\ 0,\ 4,\ 4,\ 0\}[/tex]

And take the average of those squared differences: we sum them

[tex]\displaystyle \sum_{i=1}^n (x-\overline{x})^2=36+25+4+4+0+0=69[/tex]

And we divide by the number of elements:

[tex]\displaystyle \sigma^2=\dfrac{\sum_{i=1}^n (x-\overline{x})^2}{n} = \dfrac{69}{6} = 11.5[/tex]

Finally, we take the square root of this quantity and we have the standard deviation:

[tex]\displaystyle\sigma = \sqrt{\dfrac{\sum_{i=1}^n (x-\overline{x})^2}{n}} = \sqrt{11.5}\approx 3.39[/tex]