contestada

Anastasia uses the equation p = 0.7(rh + b) to estimate the amount of take-home pay, p, for h hours worked at a rate of r dollars per hour and any bonus received, b.
What is an equivalent equation solved for h?

Respuesta :

Answer:h= [tex]\frac{(p/0.7-b)}{r}[/tex]

Step-by-step explanation:

1) p/0.7=rh+b

2) (p/0.7)-b=rh

3) [tex]\frac{(p/0.7-b)}{r}[/tex] =h

h= [tex]\frac{(p/0.7-b)}{r}[/tex]

The equivalent equation for isolated variable h = [tex]\frac{p-0.7b}{r}[/tex] obtained from the equation p = 0.7(rh + b).

What is meant by isolating a variable?

Isolating a variable is the re-arrangement of the equation for the required variable. Even though rewriting the terms, doesn't affect the logic of the equation. It forms an equivalent equation.

Isolating the variable h from the given equation:

The given equation is p = 0.7(rh + b)

Where,

p - home pay

h - working hours

r - the rate of dollars per hour

b - bonus received

Re-writing the equation for the variable h:

p = 0.7(rh + b)

⇒ p/0.7 = rh + b

⇒ p/0.7 - b = rh

⇒ h = p/0.7r -b/r

∴ h = [tex]\frac{p-0.7b}{r}[/tex]

Therefore, variable h is isolated and obtained an equivalent equation.

Learn more about isolating the variable here:

https://brainly.com/question/23692213

#SPJ2