OhDezzy
contestada

The expression above can also be written in the form a^b/c

The menu options for a= is 15, 4, or 7.
The menu options for b= is 4, 7, or 15.
And the menu options for c= is 7, 4, 15.​

The expression above can also be written in the form abcThe menu options for a is 15 4 or 7The menu options for b is 4 7 or 15And the menu options for c is 7 4 class=

Respuesta :

Answer:

[tex]a=15, b=7, c=4[/tex]

Step-by-step explanation:

we have

[tex]\sqrt[4]{15^{7}}[/tex]

Remember that

[tex]\sqrt[c]{a^{b}}=a^{\frac{b}{c}}[/tex]

so

[tex]\sqrt[4]{15^{7}}=15^{\frac{7}{4}}[/tex]

therefore

[tex]a=15, b=7, c=4[/tex]

Answer:

The solution, a=15, b=7 and c=4

Step-by-step explanation:

Given: [tex]\sqrt[4]{15^7}[/tex]

using exponent and surds rule to change exponent to radical form or radical to exponent form.

Rule: [tex]\sqrt[n]{a^m}=a^{\frac{m}{n}}[/tex]

Now we compare the given expression

[tex]\sqrt[n]{a^m}=\sqrt[4]{15^7}[/tex]

[tex]\Rightarrow 15^{\frac{7}{4}}[/tex]

It is equal to [tex]a^{\frac{b}{c}}[/tex]

Compare both solution

[tex]a^{\frac{b}{c}}=15^{\frac{7}{4}}[/tex]

[tex]a\rightarrow 15[/tex]

[tex]b\rightarrow 7[/tex]

[tex]c\rightarrow 4[/tex]

Hence, The solution a=15, b=7 and c=4