Respuesta :

Answer:

[tex]x=\frac{5+\sqrt{41}}{4}[/tex] and [tex]x=\frac{5-\sqrt{41}}{4}[/tex]

Step-by-step explanation:

[tex]2x^2-5x+1=3[/tex]

To solve for x, we make right hand side 0

Subtract 3 from both sides

Given equation becomes

[tex]2x^2-5x-2=0[/tex]

We apply quadratic formula to solve for x

[tex]x=\frac{-b+-\sqrt{b^2-4ac}}{2a}[/tex]

a=2, b=-5, c=-2

[tex]x=\frac{5+-\sqrt{5^2-4(2)(-2)}}{2(2)}[/tex]

[tex]x=\frac{5+-\sqrt{41}}{4}[/tex]

[tex]x=\frac{5+\sqrt{41}}{4}[/tex] and [tex]x=\frac{5-\sqrt{41}}{4}[/tex]