if the diameter is 14, then its radius must be half that, or 7.
[tex]\bf \textit{volume of a sphere}\\\\ V=\cfrac{4\pi r^3}{3}~~ \begin{cases} r=radius\\ \cline{1-1} r=7 \end{cases}\implies V=\cfrac{4\pi (7)^3}{3}\implies \stackrel{\pi =3.14}{V=1436.03} \\\\[-0.35em] ~\dotfill\\\\ \textit{volume of a cylinder}\\\\ V=\pi r^2 h~~ \begin{cases} r=radius\\ h=height\\ \cline{1-1} r=7\\ h=14 \end{cases}\implies V=\pi (7)^2(14)\implies \stackrel{\pi =3.14}{V=2154.04}[/tex]