Find the equation for the line graph below in either slope-intercept OR point-slope form. (will pick brainiest)

Answer:
[tex]\large\boxed{y=\dfrac{2}{3}x+4}[/tex]
Step-by-step explanation:
The slope-intercept form of an equation of a line:
[tex]y=mx+b[/tex]
m - slope
b - y-intercept (0, b)
The formula of a slope:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
We have the points:
(0, 4) → y-intercept (b = 4)
(3, 6)
Substitute:
[tex]m=\dfrac{6-4}{3-0}=\dfrac{2}{3}[/tex]
Finally we have the equation:
[tex]y=\dfrac{2}{3}x+4[/tex]
Answer:
see explanation
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
Calculate m using the slope formula
m = (y₂ - y₁ ) / (x₂ - x₁ )
with (x₁, y₁ ) = (- 3, 2) and (x₂, y₂ ) = (0, 4) ← 2 points on the line
m = [tex]\frac{4-2}{0+3}[/tex] = [tex]\frac{2}{3}[/tex]
note the line crosses the y- axis at (0, 4) ⇒ c = 4, hence
y = [tex]\frac{2}{3}[/tex] x + 4 ← in slope- intercept form
OR
the equation of a line in point- slope form is
y - b = m(x - a)
where m is the slope and (a, b) a point on the line
here m = [tex]\frac{2}{3}[/tex] and (a, b) = (3, 6), hence
y - 6 = [tex]\frac{2}{3}[/tex](x - 3) ← in point- slope form