The digits of a two-digit number sum to 8. When the digits are reversed, the resulting number is 18 less than the original number. What is the original number?

Respuesta :

Answer:

53

Step-by-step explanation:

Let's make some equations.

The number is two-digit, so let's make it [tex]xy[/tex]

Also, the two digits add up to 8, so [tex]x+y=8[/tex]

Now the value of [tex]xy=10x+y[/tex]

and the value of [tex]yx=10y+x[/tex]

Since we know that when we reverse the digits the number is less than the resulting number by 18, we can formulate an equation.

[tex]10y+x=10x+y+18[/tex]

Solve this equation.

[tex]9y-9x=18[/tex]

[tex]9(y-x)=18[/tex]

[tex]y-x=2[/tex]

Now let's use the equation we made earlier.

Change [tex]x+y=8[/tex] into [tex]y=8-x[/tex]

Solve the system of equations.

[tex]y-x=2[/tex]

[tex]y=8-x[/tex]

[tex]8-x-x=2[/tex]

[tex]8-2x=2[/tex]

[tex]-2x=-6[/tex]

[tex]x=3[/tex]

[tex]y-3=2[/tex]

[tex]y=5[/tex]

So the original number is 53.