Determine which polynomial is a perfect square trinomial. 4x2 − 12x + 9 16x2 + 24x − 9 4a2 − 10a + 25 36b2 − 24b − 16

Respuesta :

Answer:

4x^2 - 12x + 9

Step-by-step explanation:

Please use " ^ " to denote exponentiation:  4x^2 - 12x + 9.

This 4x^2 - 12x + 9 factors into (2x - 3)^2, and is thus a perfect square trinomial.

The polynomial [tex]4x^2-12x + 9[/tex] is a perfect square trinomial. It has a binomial factor (2x - 3).

What is a perfect square trinomial?

The product of a binomial by itself gives the perfect square trinomial.

A trinomial is a polynomial that has only three terms and A binomial is a polynomial that has only two terms.

Factorizing the given trinomials:

A. Trinomial  [tex]4x^2-12x+9[/tex]

⇒ [tex](2x)^2-2(2x)(3)+(3)^2[/tex]

This is in the form of [tex]a^2-2ab+b^2[/tex] . So, we can write [tex](a - b)^2[/tex]

⇒ [tex](2x - 3)^2[/tex] or (2x - 3)(2x - 3)

Thus, this is a perfect square trinomial.

B. Trinomial [tex]16x^2+24x-9[/tex]

⇒ [tex](4x)^2+2(4x)(3)-(3)^2[/tex]

Since it cannot split into a binomial square, this trinomial is not a perfect square trinomial.

C. Trinomial [tex]4a^2-10a+25[/tex]

⇒ (2a)^2-2(5a)+(5)^2

This cannot be split into a binomial square, this is not a perfect square trinomial.

D. Trinomial [tex]36b^2-24b-16[/tex]

⇒ [tex](6b)^2-2(6b)(2)-(4)^2[/tex]

So, this is not a perfect square trinomial.

Therefore, the trinomial at option A is a perfect square trinomial.

Learn more about the perfect square trinomial here:

https://brainly.com/question/2751022

#SPJ2