Consider the quadratic function f(x) = 2x2 – 8x – 10. The x-component of the vertex is . The y-component of the vertex is . The discriminant is b2 – 4ac = (–8)2 – (4)(2)(–10) = .

Respuesta :

Answer:

Part 1) The x-component of the vertex is 2 and the y-component of the vertex is -18

Part 2) The discriminant is 144

Step-by-step explanation:

we have

[tex]f(x)=2x^{2}-8x-10[/tex]

step 1

Find the discriminant

The discriminant of a quadratic equation is equal to

[tex]D=b^{2}-4ac[/tex]

in this problem we have

[tex]f(x)=2x^{2}-8x-10[/tex]

so

[tex]a=2\\b=-8\\c=-10[/tex]

substitute

[tex]D=(-8)^{2}-4(2)(-10)[/tex]

[tex]D=64+80=144[/tex]

The discriminant is greater than zero, therefore the quadratic equation has two real solutions

step 2

Find the vertex

Convert the quadratic equation into vertex form

[tex]f(x)+10=2x^{2}-8x[/tex]

[tex]f(x)+10=2(x^{2}-4x)[/tex]

[tex]f(x)+10+8=2(x^{2}-4x+4)[/tex]

[tex]f(x)+18=2(x-2)^{2}[/tex]

[tex]f(x)=2(x-2)^{2}-18[/tex] -----> equation in vertex form

The vertex is the point (2,-18)

therefore

The x-component of the vertex is 2

The y-component of the vertex is -18

Answer:

Consider the quadratic function f(x) = 2x2 – 8x – 10.

The x-component of the vertex is

✔ 2

The y-component of the vertex is

✔ –18

The discriminant is b2 – 4ac = (–8)2 – (4)(2)(–10) =

✔ 144