Respuesta :
For this case we have the following expression:
[tex](\sqrt {12} +6) (- \sqrt {8} - \sqrt {2})[/tex]
We apply distributive property:
[tex](\sqrt {12} * - \sqrt {8}) + (\sqrt {12} * - \sqrt {2}) + (6 * - \sqrt {8}) + (6 * - \sqrt {2} ) =\\- \sqrt {96} - \sqrt {24} -6 \sqrt {8} -6 \sqrt {2} =[/tex]
We rewrite in equivalent form:
[tex]- \sqrt {4 ^ 2 * 6} - \sqrt {2 ^ 2 * 6} -6 \sqrt {2 ^ 2 * 2} -6 \sqrt {2} =\\-4 \sqrt {6} -2 \sqrt {6} -6 * 2 \sqrt {2} -6 \sqrt {2} =[/tex]
[tex]-4 \sqrt {6} -2 \sqrt {6} -12 \sqrt {2} -6 \sqrt {2} =\\-6 \sqrt {6} -18 \sqrt {2}[/tex]
Answer:
[tex]-6 \sqrt {6} -18 \sqrt {2}[/tex]
Answer:
Its A. on edge
Step-by-step explanation:
could that really be simplified anymore!!!!!