Solve the following quadratic equations by extracting square roots.Answer the questions that follow.


1. x²=16
2. t²=81
3. r²=100=0
4. x²-144=0
5. 2s²=50

Respuesta :

Answer:

1.  x=±4

2. t=±9

3. r=±10

4. x=±12

5. s=±5

Step-by-step explanation:

1. x^2 = 16

Taking square root on both sides

[tex]\sqrt{x^2}=\sqrt{16}\\\sqrt{x^2}=\sqrt{(4)^2}\\[/tex]

x=±4

2. t^2=81

Taking square root on both sides

[tex]\sqrt{t^2}=\sqrt{81}\\\sqrt{t^2}=\sqrt{(9)^2}[/tex]

t=±9

3. r^2-100=0

[tex]r^{2}-100=0\\r^2 =100\\Taking\ Square\ root\ on\ both\ sides\\\sqrt{r^2}=\sqrt{100}\\\sqrt{r^2}=\sqrt{(10)^2}[/tex]

r=±10

4. x²-144=0

x²=144

Taking square root on both sides

[tex]\sqrt{x^2}=\sqrt{144}\\\sqrt{x^2}=\sqrt{(12)^2}[/tex]

x=±12

5. 2s²=50

[tex]\frac{2s^2}{2} =\frac{50}{2}\\s^2=25\\Taking\ Square\ root\ on\ both\ sides\\\sqrt{s^2}=\sqrt{25}\\\sqrt{s^2}=\sqrt{(5)^2}[/tex]

s=±5 ..

Answer:

[tex]1.+4,-4\\2. +9,-9\\3. +10,-10\\4. +12, -12\\5. +5, -5[/tex]

Step-by-step explanation:

IN order to solve the quadratic equations you just have to solve the square root of the numeric part of the equation:

[tex]x^{2} =16\\x=\sqrt{16}\\ x= +4, -4[/tex]

[tex]t^{2} =16\\t=\sqrt{81}\\ x= +9, -9[/tex]

[tex]r^{2} =100\\r=\sqrt{100}\\ x= +10, -10[/tex]

[tex]x^{2} -144=0\\x=\sqrt{144}\\ x= +12, -12[/tex]

[tex]2s^{2}=50\\s^{2}=\frac{50}{2} \\s=\sqrt{25}\\ s= +5, -5[/tex]

Just remember that the solution for any square root will always be a negative and a positive number.