anwguk
contestada

Analyze the diagram below and complete the instructions that follow


Find a, b and c

. a= 12, b= 6(square root) 3, c= 3 (square root) 6

a= 12, b=12 (square root) 2, c= 3 (square root) 6

a= 6 (square root) 3, b= 12, c= 6 (square root) 2

a= 6 (square root) 3, b= 12 (square root) 3, c= 6 (square root) 2

Analyze the diagram below and complete the instructions that follow Find a b and c a 12 b 6square root 3 c 3 square root 6 a 12 b12 square root 2 c 3 square roo class=

Respuesta :

Answer:

9

Step-by-step explanation:

Answer:

b=12 , a=6[tex]6 \sqrt{3}[/tex] , c=6[tex]\sqrt{2}[/tex]

Step-by-step explanation:

based on the graph you are showing, you can use  "SOH CAH TOA"

for right triangles, then you use "CAH" for get b:

[tex]Cos(60)=\frac{6}{b}\\b*Cos(60)=6\\b*\frac{1}{2}=6\\ b=6*2\\b=12\\\\[/tex]

you do the same for a, but in this case you use sin, not cos:

[tex]sin(60)=\frac{a}{b} \\b*sin(60)=a\\\\12*\sqrt{3}/2=a\\ 6\sqrt{3}=a\\[/tex]

and with your b value, you can get c, but now you use Cos with the 45 angle:

[tex]b*cos(45)=c\\12*\sqrt{2}/2=c\\ 6\sqrt{2}=c[/tex]

remember SOH CAH TOA means, Sin(x)=opposite/Hypotenuse, Cos(x)=adjacent/hypotenuse, and tan(x)=Opposite/adjacent.