Respuesta :

Answer:

4√7/5

Step-by-step explanation:

  • to take a root of a fraction, take the root of the numerator and denominator separately

3×√7/5-√28/5+√63/5

  • calculate the product

3√7/5-2√7/5+3√7/5

  • calculate the sum or difference

4√7/5

The simplified value of [tex]\frac{3\sqrt{7} }{25} -\frac{\sqrt{28} }{25} +\frac{\sqrt{63} }{25}[/tex] will be [tex]\frac{4\sqrt{7}}{25}[/tex].

What is system of equations?

System of equations is a finite set of equations for which common solutions are sought.

We have,

[tex]\frac{3\sqrt{7} }{25} -\frac{\sqrt{28} }{25} +\frac{\sqrt{63} }{25}[/tex]

Now,

Take LCM, of the given fraction,

We get,

[tex]\frac{3\sqrt{7} -\sqrt{28}+\sqrt{63}}{25}[/tex]

Now,

Simplify by rewriting every number in numerator in form of [tex]\sqrt{7}[/tex],

i.e.

[tex]\frac{3\sqrt{7} -\sqrt{4*7}+\sqrt{9*7}}{25}[/tex]

Now,

[tex]\frac{3\sqrt{7} -2\sqrt{7}+3\sqrt{7}}{25}[/tex]

Now,

Every digit is in the form of  [tex]\sqrt{7}[/tex],

So,

Simplify,

We get,

[tex]=\frac{4\sqrt{7}}{25}[/tex]

So,

This is the simplified form of the given equation.

Hence, we can say that the simplified value of [tex]\frac{3\sqrt{7} }{25} -\frac{\sqrt{28} }{25} +\frac{\sqrt{63} }{25}[/tex] will be [tex]\frac{4\sqrt{7}}{25}[/tex].

To know more about equation click here

https://brainly.com/question/12895249

#SPJ2