which expression is equivalent to (2^1/2 2^3/4)^2

Answer:
[tex]\sqrt{2^5}[/tex]
Step-by-step explanation:
[tex]2^{1/2}[/tex] × [tex]2^{3/4}[/tex] = [tex]2^{5/4}[/tex]
([tex]2^{5/4}[/tex])² = [tex]2^{5/2}[/tex] = [tex]\sqrt{2^5}[/tex]
Answer:
[tex]\large\boxed{\sqrt{2^5}}[/tex]
Step-by-step explanation:
[tex]\bigg(2^\frac{1}{2}\cdot2^\frac{3}{4}\bigg)^2\qquad\text{use}\ a^n\cdot a^m\\\\=\bigg(2^{\frac{1}{2}+\frac{3}{4}}\bigg)^2\qquad\left/\dfrac{1}{2}+\dfrac{3}{4}=\dfrac{1\cdot2}{2\cdot2}+\dfrac{3}{4}=\dfrac{2}{4}+\dfrac{3}{4}=\dfrac{5}{4}\right/\\\\=\bigg(2^\frac{5}{4}\bigg)^2\qquad\text{use}\ (a^n)^m=a^{nm}\\\\=2^{\frac{5}{4}\cdot2}\\\\=2^{\frac{5}{2}}\qquad\text{use}\ a^\frac{m}{n}=\sqrt[n]{a^m}\\\\=\sqrt{2^5}[/tex]