Triangle ABC has vertices at A(-2, 3), B(-3,-6), and C(2,-
1). Is triangle ABC a right triangle? If so, which angle is the
right angle?
w Ano
A(-2,3)
O No, the triangle has no right angles.
O Yes, the right angle is angle A.
O Yes, the right angle is angle B.
O Yes, the right angle is angle C.
6
5
4 -3 3-2 -1,5
2
6
x
3 4 5
C (2,-1)
B(-3,-6)

Respuesta :

Answer:

Yes, the right angle is angle B

Step-by-step explanation:

we have

[tex]A(-2, 3), B(-3,-6),C(2,-1)[/tex]

Plot the vertices

see the attached figure

we know that

If triangle ABC is a right triangle

then

Applying the Pythagoras Theorem

[tex]AB^{2} =AC^{2}+BC^{2}[/tex]

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

Find the distance AB

[tex]A(-2, 3), B(-3,-6)[/tex]

substitute in the formula

[tex]d=\sqrt{(-6-3)^{2}+(-3+2)^{2}}[/tex]

[tex]d=\sqrt{(-9)^{2}+(-1)^{2}}[/tex]

[tex]AB=\sqrt{82}\ units[/tex]

Find the distance BC

[tex]B(-3,-6),C(2,-1)[/tex]

substitute in the formula

[tex]d=\sqrt{(-1+6)^{2}+(2+3)^{2}}[/tex]

[tex]d=\sqrt{(5)^{2}+(5)^{2}}[/tex]

[tex]BC=\sqrt{50}\ units[/tex]

Find the distance AC

[tex]A(-2, 3),C(2,-1)[/tex]

substitute in the formula

[tex]d=\sqrt{(-1-3)^{2}+(2+2)^{2}}[/tex]

[tex]d=\sqrt{(-4)^{2}+(4)^{2}}[/tex]

[tex]AC=\sqrt{32}\ units[/tex]

Verify the Pythagoras theorem

[tex](\sqrt{82})^{2} =(\sqrt{32})^{2}+(\sqrt{50})^{2}[/tex]

[tex]82=82[/tex] ---> is true

therefore

Is a right triangle and the right angle is B

Ver imagen calculista