Answer:
P' (−11, 13), Q' (−17, −19), R' (23, 27)
Step-by-step explanation:
When we reflect a point across the x-axis, we negate the y-coordinates to obtain the image points.
The mapping for the reflection across the x-axis is
[tex](x,y)\to (x,-y)[/tex]
The vertices of the given figure are;
P(−11,−13), Q(−17,19), and R(23,−27)
We apply the rule to obtain:
[tex]P(-11,-13)\to P'(-11,13)[/tex]
[tex]Q(-17,19)\to Q'(-17,-19)[/tex]
[tex]R(23,-27)\to R'(23,27)[/tex]
The correct option is P' (−11, 13), Q' (−17, −19), R' (23, 27)