Answer:
The radius of the base is [tex]r=6.3\ in[/tex]
Step-by-step explanation:
we know that
The volume of a cone is equal to
[tex]V=\frac{1}{3}\pi r^{2} h[/tex]
we have
[tex]V=288\ in^{3}[/tex]
[tex]h=7\ in[/tex]
[tex]\pi=3.14[/tex]
substitute and solve for r
[tex]288=\frac{1}{3}(3.14)r^{2} (7)[/tex]
[tex]864=(3.14)r^{2} (7)[/tex]
[tex]r^{2}=864/[(3.14)(7)][/tex]
[tex]r=6.3\ in[/tex]