Respuesta :

ANSWER

[tex]\cos B = \frac{ \sqrt{3} }{3} [/tex]

EXPLANATION

The given triangle is a right triangle.

It was given that,

[tex]a = 1[/tex]

and

[tex]b = \sqrt{2} [/tex]

Using the Pythagoras Theorem, we can determine the value of c.

[tex] {c}^{2} = {( \sqrt{2} )}^{2} + {1}^{2} [/tex]

[tex] {c}^{2} = 2 + 1[/tex]

[tex]{c}^{2} = 3[/tex]

[tex]c = \sqrt{3} [/tex]

The ratio is the adjacent over the hypotenuse.

[tex]\cos B = \frac{1 }{ \sqrt{3} } [/tex]

We rationalize to get:

[tex]\cos B = \frac{ \sqrt{3} }{ \sqrt{3} \times \sqrt{3} } = \frac{ \sqrt{3} }{3} [/tex]