1. Solve |x|>5 A. {-5,5} B. { x|-5 < x < 5 } C. { x|x < -5 or x > 5}

2. Solve |x|>5 A. {-5,5} B. { x|-5 < x < 5 } C. { x|x < -5 or x > 5}

3. Solve |4x-8| <12

Respuesta :

1. The given absolute value inequality is:

[tex] |x| \: > \: 5[/tex]

This implies that;

[tex] - x \: > \: 5 \: or \: x \: > \: 5[/tex]

We the first inequality by -1 and reverse the sign to get:

[tex]x \: < - \: 5 \: or \: x \: > \: 5[/tex]

The correct answer is

C. { x|x < -5 or x > 5}

2. The given inequality is:

[tex] |4x - 8| \: < \: 12[/tex]

This implies that,

[tex] - (4x - 8) \: < \: 12 \: or \: (4x - 8) \: < \: 12[/tex]

Divide through the first inequality by -1 and reverse the sign

[tex]4x - 8\: > \: - 12 \: or \: 4x - 8\: < \: 12[/tex]

Group similar terms:

[tex]4x \: > \: - 12 + 8 \: or \: 4x \: < \: 12 + 8[/tex]

Simplify:

[tex]4x \: > \: - 4\: or \: 4x \: < \: 20[/tex]

Divide both sides by 4

[tex]x \: > \: - 1\: or \: x \: < \: 5[/tex]