Respuesta :

Answer:

Part 1) The diameter is [tex]D=20.38\ cm[/tex]

Part 2) The radius is [tex]r=10.19\ cm[/tex]

Part 3)  The length of an arc is equal to [tex]33.78\ cm[/tex]

Step-by-step explanation:

Part 1) Find the diameter

we know that the circumference of a circle is equal to

[tex]C=\pi D[/tex]

where

D is the diameter

we have

[tex]C=64\ cm[/tex]

assume

[tex]\pi =3.14[/tex]

substitute and solve for D

[tex]64=(3.14)D[/tex]

[tex]D=64/(3.14)=20.38\ cm[/tex]

Part 2) Find the radius

we know that

The radius is half the diameter

so

[tex]r=D/2[/tex]

substitute

[tex]r=20.38/2=10.19\ cm[/tex]

Part 3) Find the length of an arc of 190 degrees

we know that

The circumference of the circle subtends a central angle of 360 degrees

so

using proportion

[tex]\frac{64}{360}=\frac{x}{190}\\ \\ x=64*190/360\\ \\x=33.78\ cm[/tex]