Which of the following equations is an example of inverse variation between
the variables x and y?

For this case we have that by definition, a direct variation is given by:
[tex]y = kx[/tex]
Where:
k: It is the constant of proportionality of the variables.
On the other hand, we have that the inverse variation is given by:
[tex]y = \frac {k} {x}[/tex]
Where:
k: It is the constant of proportionality of the variables.
In this way, the correct option is: [tex]y = \frac {9} {x}[/tex]
ANswer:
Option A
Answer: Option A
[tex]y = \frac{9}{x}[/tex]
Step-by-step explanation:
It is said that two variables x and y vary inversely if the increase of one of the variables causes the other to decrease.
This is represented by the following equation
[tex]y = \frac{k}{x}[/tex]
Where k is known as variation constant
To answer this question, identify among the options given that the form has
[tex]y = \frac{k}{x}[/tex]
The answer is the option A. with k = 9