Respuesta :

Answer:

Two solutions were found :

t =(16-√288)/-2=8+6√ 2 = 0.485

t =(16+√288)/-2=8-6√ 2 = -16.48

Step-by-step explanation:

Answer:

-IF THE EQUATION IS [tex]\frac{1}{t-2}=\frac{t}{8}[/tex], THEN:

[tex]t_1=4\\t_2=-2[/tex]

-IF THE EQUATION IS [tex]\frac{1}{t}-2=\frac{t}{8}[/tex], THEN:

[tex]t_1=-16.485\\t_2=0.485[/tex]

Step-by-step explanation:

-IF THE EQUATION IS [tex]\frac{1}{t-2}=\frac{t}{8}[/tex] THE PROCEDURE IS:

Multiply both sides of the equation by [tex]t-2[/tex] and by 8:

[tex](8)(t-2)(\frac{1}{t-2})=(\frac{t}{8})(8)(t-2)\\\\(8)(1)=(t)(t-2)\\\\8=t^2-2t[/tex]

Subtract 8 from both sides of the equation:

[tex]8-8=t^2-2t-8\\\\0=t^2-2t-8[/tex]

Factor the equation. Find two numbers whose sum be -2 and whose product be -8. These are -4 and 2:

[tex]0=(t-4)(t+2)[/tex]

Then:

[tex]t_1=4\\t_2=-2[/tex]

-IF THE EQUATION IS [tex]\frac{1}{t}-2=\frac{t}{8}[/tex] THE PROCEDURE IS:

Subtract [tex]\frac{1}{t}[/tex] and [tex]2[/tex]:

[tex]\frac{1}{t}-2=\frac{t}{8}\\\\\frac{1-2t}{t}=\frac{t}{8}[/tex]

Multiply both sides of the equation by [tex]t[/tex]:

[tex](t)(\frac{1-2t}{t})=(\frac{t}{8})(t)\\\\1-2t=\frac{t^2}{8}[/tex]

Multiply both sides of the equation by 8:

[tex](8)(1-2t)=(\frac{t^2}{8})(8)\\\\8-16t=t^2[/tex]

Move the [tex]16t[/tex] and 8 to the other side of the equation and apply the Quadratic formula. Then:

[tex]t^2+16t-8=0[/tex]

[tex]t=\frac{-b\±\sqrt{b^2-4ac}}{2a}\\\\t=\frac{-16\±\sqrt{16^2-4(1)(-8)}}{2(1)}\\\\t_1=-16.485\\t_2=0.485[/tex]