Respuesta :

Each term in the sum differs by 6, so that the [tex]n[/tex]th term is determined by [tex]4+6(n-1)[/tex]. The last term is 70, so there are

[tex]4+6(n-1)=70\implies n=12[/tex]

terms in the sum. If

[tex]S=4+10+\cdots+64+70[/tex]

then it's also true that

[tex]S=70+64+\cdots+10+4[/tex]

and joining the sums gives us

[tex]2S=(4+70)+(10+64)+\cdots+(64+10)+(70+4)[/tex]

[tex]2S=12\cdot74[/tex]

[tex]S=\dfrac{12\cdot74}2\implies\boxed{S=444}[/tex]