Answer: [tex]P=14units[/tex]
Step-by-step explanation:
The perimeter of a triangle is the sum of the lenghts of its sides.
Given the triangle ABC , its perimeter will be:
[tex]P=AB+BC+CA[/tex]
Then, you know that the lenghts of the sids of the triangle ABC are:
[tex]AB=3units\\BC=5units\\CA=\sqrt{(3)^2+(-5)^2}=\sqrt{9+25}=\sqrt{34}=5.83units[/tex]
Therefore, to find the perimeter of this triangle, you need to substitute these lengthts into the formula [tex]P=AB+BC+CA[/tex].
So, the perimeter of the triangle ABC is:
[tex]P=3units+5units+5.83units=13.83units[/tex]
To the nearest whole unit is:
[tex]P=14units[/tex]