Respuesta :

gmany

Answer:

[tex]\large\boxed{A=(223.3+49\pi)m^2}[/tex]

Step-by-step explanation:

(look at the picture)

We have:

two halves of circle (whole circle) with radius r = 7m;

the suqare wih length side a = 14m;

the triangle with base b = 14m and hight h = 3.9m.

The formula of an area of a circle:

[tex]A_1=\pi r^2[/tex]

Substitute:

[tex]A_1=\pi(7^2)=49\pi\ m^2[/tex]

The formula of an area of a square:

[tex]A_2=a^2[/tex]

Substitute:

[tex]A_2=14^2=196\ m^2[/tex]

The formula of an area of a triangle:

[tex]A_3=\dfrac{bh}{2}[/tex]

Substitute:

[tex]A_3=\dfrac{(14)(3.9)}{2}=(7)(3.9)=27.3\ m^2[/tex]

The area of a figure:

[tex]A=A_1+A_2+A_3\\\\A=49\pi+196+27.3=223.3+49\pi[/tex]

Ver imagen gmany